
From microscopic to macroscopic
Some consideration and examples on statistical mechanics in and out of

equilibrium.

Federico Bonetto

School of Mathematics, Georgia Tech

SoM, Ga Tech - 11/10/2023

F. Bonetto bonetto@math.gatech.edu From microscopic to macroscopic 1 / 31



Plan of the talk.

Introduction to the physics of gases.

Classical heuristic results.

The Kac model and gas kinetic.

Classical results on the Kac model.
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Statistical Mechanics

A gas is an example of a system composed by a large number of microscopic element
(the atoms or molecules) interacting on a microscopic scale. Or at least this is what we
have been told in high school.

Atoms and molecules move very fast and collide like little billiard balls. At the
macroscopic level this room looks extremely chaotic.

At the macroscopic level, we do not see atoms or molecules, collisions or interactions,
everything look pretty stable or “in equilibrium”.

We know how to characterize this equilibrium with few physical quantities: temperature
T , pressure P and density δ.

These quantities satisfy precise and simple relations, the most famous of those being
the Law of Perfect Gases:

P = δkBT .

Question: how can this two pictures be consistent? Even better: can we derive the
macroscopic behaviour form the microscopic laws?
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To get an idea ...

Here are some physical quantities for oxygen at ambient condition

temperature T = 273 K

pressure P = 1.01× 105 N/m2

number density δ = M/V = 2.7× 1025 molecules/m3

kinetic radius r = 1.73× 10−10 m

occupied volume fraction 4πr 3δ/3 = 5.85× 10−4

average speed v = 1.58× 102 m/s

mean free path ρ = 1.0× 10−7 m

mean free time λ = 0.6× 10−5 s

How does the Law of Perfect Gases, and many other macroscopic laws, emerge from
this microscopic chaos?
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Gas Kinetic.

A very simplified model of a gas at temperature T = β−1 has the following ingredients:

1 a very large number M of particles in a container of volume V ;

2 the particles are hard spheres of small radius r ;

3 the collisions are elastic;

4 the average kinetic energy of the particles is proportional to T .
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A little theatre ...

1000 particles initially confined in a quarter of the container and with independent
velocity uniformly distributed in [−1, 1].

Left panel: positions. Right panel: histogram of the x-velocity (time smoothed).
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Gas Kinetic: schematics
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A little history: Fourier.

Heat, like gravity, penetrates every substance of the universe, its ray occupy
all parts of space. The object of our work is to set forth the mathematical laws
which this element obeys. The theory of heat will hereafter form one of the
most important branches of general physics.

— Théorie analytique de la chaleur, 1822
— Jean Baptiste Joseph Fourier

But whatever may be the range of mechanical theories, they do not apply
to the effects of heat. These make up a special order of phenomena, which
cannot be explained by the principles of motion and equilibria.

— Ibidem
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A simple Example

Consider a gas in a thermally isolating container and let

V be the container with volume |V |;

N ' 1025 be the number of particles.

If the temperature is high enough we can neglect quantum effect: particle are
classical. They can be thought as hard spheres of radius r and mass m.

The i-th particle has a momentum pi ∈ R3 and a position qi ∈ V

The system is thus described by a point in

T = R3N × V N .

A particle moves on straight line with velocity pi/m till it collides with another particle or
with the walls of the container.
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P = δkBT

The gas is in equilibrium.

We can assume that the probability f (pi ,qi ) of finding particle i at position qi with
momentum pi is independent of qi (system is uniform) and depends only on |pi |
(rotational invariance).

Let ∆S be a small part of the wall with area |∆S| and inward normal vector n.

∆S

pn
(n · p)∆t

The number of particle with momentum p that will collide with ∆S in the next ∆t is

(p · n)∆S∆t f (p) dp
δ

m

where δ = N/|V | is the number density.
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Since during a collision a particle momentum changes by 2(p · n), the total momentum
exchanged by the gas with ∆S in the time ∆t is

∆P = 2
∫
(p·n<0)

1
m

(p · n)2f (p) dp ∆S∆t =
2
3

∫
|p|2

2m
f (p) dp ∆S∆t

But we know that the average kinetic energy is proportional to the temperature. More
precisely ∫

|p|2

2m
f (p) dp =

3
2

kBT

where kB is the Boltzmann constant and T the temperature.

Clearly the pressure is given by

P =
∆P
|∆S|∆t

= δkBT

F. Bonetto bonetto@math.gatech.edu From microscopic to macroscopic 11 / 31



Since during a collision a particle momentum changes by 2(p · n), the total momentum
exchanged by the gas with ∆S in the time ∆t is

∆P = 2
∫
(p·n<0)

1
m

(p · n)2f (p) dp ∆S∆t =
2
3

∫
|p|2

2m
f (p) dp ∆S∆t

But we know that the average kinetic energy is proportional to the temperature. More
precisely ∫

|p|2

2m
f (p) dp =

3
2

kBT

where kB is the Boltzmann constant and T the temperature.

Clearly the pressure is given by

P =
∆P
|∆S|∆t

= δkBT

F. Bonetto bonetto@math.gatech.edu From microscopic to macroscopic 11 / 31



What about heat conduction.
Suppose now that the top of V is in contact with a “heat reservoir” at temperature T+

and the bottom with a heat reservoir at temperature T−.

T−

T+

T (z) j(z)

This is called a Non Equilibrium Steady State. It is non equilibrium because we have a
flux of energy through the system. But it is a steady state because the local density,
pressure and temperature do not vary in time.

The temperature T (z) of the gas and the heat current j(z) will depend on the position
in V only through the vertical coordinate z.

Fourier’s Law states that
j(z) = −c(T )

dT (z)

dz
where j(z) is the heat current in the z direction and c(T ) is the thermal conductivity.
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Local Equilibrium

What is T (z)? I know what is the temperature of a gas in equilibrium. We saw it is
linked to the mean kinetic energy of the atoms (or molecules) that form the gas.

We draw a grid on our system and imagine that it is made up of a large number of
small “virtual” boxes. In one cubic meter of oxygen there are roughly 1025 molecules. If
we divide each side in 105 small intervals we get 1015 small boxes of side 10−5 meters.
Each of them still contains 1010 molecules!

T−

T+

(T(z),j(z))

Each of this small box can be considered as a thermodynamical system in equilibrium.
It interacts with its neighbor boxes via exchange of particles or collisions between
particles near their boundary.

This is called the local equilibrium description of a macroscopic gas (or any other
object).
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Local equilibrium with 25 volume elements.
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de Groot and Mazur

It will now be assumed that, although the total system is not in equilibrium,
there exists within small mass elements a state of “local” equilibrium for which
the local entropy s is the same function of u, v and ck as in real equilibrium.

— Non-Equilibrium Thermodynamics, 1962
— Sybren Ruurds de Groot and Peter Mazur

The hypothesis of “local” equilibrium can, from a macroscopic point of view,
only be justified by virtue of the validity of the conclusions derived from it.

— Ibidem
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Mean free time.

The number of collision ν a particle suffers in a time t is:

ν = πd2 v̄ t M/V

Thus the time between two collisions of the same particle (mean free time) is:

λ ' 1
v̄δr 2

and the space travelled by the particle between two collisions (mean free flight) is:

ρ = λv̄ ' 1
δr 2 .
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Back to heat conduction.

A particle initially at height z with pz > 0 will travel for a distance ρ and will reach, in
average, a height z + ρ/

√
3.

It will thus carry a kinetic energy proportional to T (z) from z to z + ρ/
√

3.

In the same way a particle initially at z + ρ/
√

3 with pz < 0 will carry a kinetic energy
proportional to T (z + ρ/

√
3) from z + ρ/

√
3 to z.

As before, the flux of particle with momentum p through a surface perpendicular to the
z axis is proportional to pz and the number density δ.

Finally the momentum of the particles at z is, in average, proportional to
√

T (z).
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Putting all together we get

j(z) ' δ
√

T (z)
(

T (z)− T (z + ρ/
√

3)
)
' −r−2

√
T (z)

dT (z)

dz

Thus we find that
c(T ) = Kr−2

√
T (z)

where K is a universal constant. Observe that:

c is independent from the density δ;

it behave as
√

T .

ρ is a good size for our “volume elements”. In our oxygen sample we have
ρ ' 10−7 meters. A little small but ...

The above properties are well verified experimentally at least if T is not too low
(quantum effect) or too high (particles are not hard spheres).
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The Kac model (1956).

We have M particles in 1, 2 or 3 dimensions that are initially uniformly distributed in
space.

In every time interval dt there is a probability λMdt that a collision take place.

When a collision take place two particles are randomly and uniformly selected,
independently of their position.

The incoming velocities of the two particles are randomly updated in such a way to
preserve energy and, in dimension 2 or 3, momentum.

λM is fixed in such a way that the average time between two collision of a given particle
is independent of M. That is λM = 1/(M − 1). This is called Boltzmann-Grad limit.
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Kac vs real gas dynamics

The main simplifications we have introduced are:

1 Collisions times are stochastic and independent from the position and velocity of
the particles.

2 Energy and momentum are redistributed randomly.
3 the collision rate between two particles does not depend on their velocities. This

are often called “Maxwellian Molecules”.
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The evolution.

State of the system

f (v) : RM → R v = (v1, v2, . . . , vM ) ∈ RM ,

probability of finding the system with velocities V . We take f invariant under
permutation of its arguments.

If f is the state of the system before particle i and j collide, just after the collision the
state is

Ri,j f (v) =

∫
f (ri,j (θ)v)dθ

where
r1,2(θ)v = (v1 cos(θ)− v2 sin(θ), v1 sin(θ) + v2 cos(θ), v3, . . .)

that is, ri,j (θ) is a rotation of angle θ in the i , j plane.
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The evolution.

The effect of a collision of a randomly picked pair of particles is

Qf =
1(M
2

) ∑
i<j

Ri,j f

while the probability of having k collision in a time t is

tk

k !
e−Mt

so that the evolution is given by

Ft = e−Mt
∞∑

k=0

tk

k !
Qk f0 = eLS tF0

where
LS =

2
M − 1

∑
i<j

(Ri,j − I) =
2

M − 1
K
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Master Equation.

Thus Ft satisfies the equation:
Ḟ (t) = LS f (t) .

The evolution generated by this equation preserves the total kinetic energy. Thus every
rotationally invariant distribution is a steady state.

Given an initial distribution f (v), the evolution brings it toward its projection on the
rotationally invariant distributions, that is toward

FR(v) =

∫
SM−1

F (|v |ω)dσ(ω)

where dσ(ω) the normalized volume measure on the unit sphere SM−1.

This observation “explain” the movie shown at the beginning.
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Convergence to equilibrium.

Carlen-Carvalho-Loss (2000) showed that∥∥∥etLS f − fR
∥∥∥

2
≤ Ce−L(1)t

where ‖ · ‖2 is the L2(RM ) norm and

L(1) =
1
2

M + 1
M − 2

.

The L2 norm has one major problem. Assume that

f (v) =
M∏

i=1

F (vi ) and g(v) =
M∏

i=1

G(vi )

then
‖f − g‖2 ' CM‖F −G‖2 with C > 1.
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Convergence to equilibrium in entropy.

The entropy with respect to the steady state is defined as

S (f | fR) =

∫
f (v) log

(
f (v)

fR(v)

)
dv

In general
S (f | fR) ≥ 0 S (f | fR) = 0 ⇔ f = fR

and
d
dt

S (f (t) | fR) ≤ 0

and

f (v) =
M∏

i=1

F (vi ) ⇒ S(f | fR) = O(M).

F. Bonetto bonetto@math.gatech.edu From microscopic to macroscopic 25 / 31



Cercignani Conjecture

For the realistic kinetic evolution Cercignani conjectured

S (f (t) | fR) ≤ e−c tS (f (0) | fR).

For the Kac model

− sup
F

Ṡ (f | fR)

S (f | fR)
≥ 1

M

but for every δ there exists Cδ and fδ such that

− Ṡ (fδ | fR)

S (fδ | fR)
≤ Cδ

M1−δ .

Villani (2003), Einav (2011)
Mischler and Muhot obtained polynomial decay unifrom in M.
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Boltzmann-Kac Equation

Suppose that, at least in some approximate form, for every t we have

f (v , t) =
M∏

i=1

F (vi , t) .

This is a strong form of the Stosszahlansatz or molecular Chaos hypothesis (actually
introduced by Maxwell).

From the evolution equation, integrating over all variables but one, we get the
Boltzmann-Kac equation

d
dt

F (v , t) = 2
∫

dw−
∫

dθ
(
F (v cos θ − w sin θ, t)F (v sin θ + w cos θ, t)− F (v , t)F (w , t)

)

Clearly even if f (v , 0) is a product, in general f (v , t) is not.
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Boltzmann Property

Given a symmetric distribution fM (vM ) we define the k particle marginal as

F k
M (v k ) =

∫
fM (vM ) dvk+1 · · · dvM

A sequence of distributions fM (vM ) forms a chaotic sequence if

F k (v k ) := lim
M→∞

F k
M (v k ) =

k∏
i=1

F 1(vi ) .

Classical example: the uniform distribution on the sphere of radius
√

M in RM in which
case F 1(v) is the Maxwellian distribution.

Theorem (Mc Kean)

If fM (v , 0) forms a chaotic sequence then also fM (v , t) forms a chaotic sequence. It
follows that F 1(v , t) satisfies the Boltzmann-Kac equation.
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Idea of the proof.

Let φ : Rk → R be a k variables test function. Then∫
RM

fM (vM , t)φ(v k )dvM =
∑

n

tn

n!

∫
RM

fM (vM , 0)(LS)nφ(v k )dvM

But

LSφ =
2

M − 1

∑
1≤i<j≤k

(Ri,j − I)φ+
2(M − k)

M − 1

k∑
i=1

(Ri,k+1 − I)φ→M→∞

2
k∑

i=1

(Ri,k+1 − I)φ := Λφ

Observe that if φ : Rk1 → R and ψ : Rk2 → R

Λφ⊗ ψ = (Λφ)⊗ ψ + φ⊗ (Λψ)

where φ⊗ ψ(v1 . . . , vk1+k2 ) = φ(v1 . . . , vk1 )ψ(vk1+1 . . . , vk1+k2 ).
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If now we take φ : R→ R, with some straightforward algebra we get

∑
n

tn

n!
Λnφ⊗k =

∑
n1,n2,...nk

k∏
i=1

tnk

nk !
Λnkφ

so that

lim
M→∞

∫
RM

fM (vM , t)φ
⊗k (v k )dvM =

∑
n1,n2,...nk

k∏
i=1

tnk

nk !

∫
Rnk +1

(F 1)⊗nk+1Λnkφdvnk+1 =

(∑
n

∫
Rn+1

(F 1)⊗n+1Λnφdvn+1

)k

while in the same way we get

lim
M→∞

∫
RM

fM (vN , t)φ(v1)dvM =
∑

n

∫
Rn+1

(F 1)⊗n+1Λnφdvn+1
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Thank you.
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